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Two-temperature Euler equations for a plasma with slowing down
of suprathermal particles
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SUMMARY

In the hot plasma simulations when the main flow is modeled by two-temperature Euler equations, it
is often useful to deal with slowing down of suprathermal particles created by fusion. Then a kinetic
equation has to be addressed for these particles. We focus in this paper on the coupling between the fluid
model and the kinetic equation; specially details for a coherent treatment of the electrostatic field are
given. We emphasize some details of the numerical simulations and we give numerical results. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In hot plasmas such as stellar plasmas or plasmas produced by laser in inertial confinement fusion,
the fusion of deuterium and tritium creates helium ions whose initial velocity is very large compared
with the thermal velocity of plasma ions (hence, they are called suprathermal (ST) particles). It is
crucial to deal correctly with the slowing down of these particles due to the Coulomb interactions
with the plasma and to perform the coupling of these phenomena with the hydrodynamics of
the plasma. Moreover, it is well known that for the plasma flow simulation, one has to take into
account a two-temperature model, one for the electrons and one for the ions. For a relevant physical
modeling, one has to consider also the plasma electrostatic field E (see [1]).

The modeling of the transport of the ST particles by a Vlasov–Fokker–Planck equation and the
numerical simulation have been studied for a very long time by physicists see, for example, [2, 3]
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specially in a homogeneous plasma. However, the momentum and energy deposition in the
momentum and energy balance equations of the fluid model has to be considered precisely and a
coherent treatment of the plasma electrostatic field has to be made (which was not the purpose of
the mentioned literature).

Section 1 is devoted to the statement of the model, especially the coupling aspects between the
plasma and the ST particles. In Section 2, we give some enlightments on the Monte Carlo method
for the ST particles. In the last section, some numerical results are given.

2. THE MODEL

Notations: Z is the ionization level of the plasma ions (the plasma is assumed to contain only one
species of ions); m0, ms the mass of the ions and the ST particles; qs the ST particle charge; N the
plasma density; U the plasma velocity; �I and �e= 3

2 ZTe are the ion and electron internal energies;
Te the electron temperature; PI and Pe the ion and electron pressures (the relation between P∗ and
�∗ is given by a perfect gas law); Ptot= Pe+PI. Denote also by f (t, x,v) the distribution function
of the ST particles, where v∈R3 and x belongs to a bounded domain in R3.

The Vlasov–Fokker–Planck equation: For the sake of simplicity, one assumes that the ST particles
undergo Coulomb interactions on electron population only; hence, the evolution equation of f
reads

�
�t

f +v ·∇ f =− qs
ms

E · � f

�v
+ZN

�
�v

·(SE f ) with (SE f )(v)=(S f̃ )(v−U) (1)

knowing that f̃ (w)= f (w+U) and that the simplest form of the operator S reads as

S f̃ (w)=Yw f̃ +Oe(w) · � f̃

�w
, Oe(w)�Y

Te
ms

3

2|w|
(
1− ww

|w|2
)

The coefficient Y is roughly speaking proportional to T−3/2
e , see [3]. The change of variables

w=v−U is performed throughout the paper. For any function � defined on R3, one sets 〈�〉=∫
�(·)d·. Then balance relations related to (1) are

ms

(
�
�t

〈v f 〉+∇ ·〈vv f 〉
)

= qsE〈 f 〉−msZN 〈S f̃ 〉

ms

2

�
�t

〈|v|2 f 〉+ms

2
∇ ·〈v|v|2 f 〉 = qs〈v f 〉·E−msZN 〈v ·SE f 〉

The Euler system: Consider now the plasma model. The continuity equation is not changed by
coupling with the ST particles

�
�t

N+∇(NU)=0 (2)
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In the momentum equation, one has to add by a natural way the counterpart of the momentum
change of the ST particles (msZN 〈S f̃ 〉) added to (qsE〈 f 〉), that is

m0

(
�
�t

+∇(U·)
)

(NU)+∇Ptot=msZN 〈S f̃ 〉−qsE〈 f 〉 (3)

Since 〈v ·S f̃ (·−U)〉=〈(w+U) ·S f̃ 〉, so with W=N (�e+�I+m0|U|2/2), the plasma energy
balance equation reads as(

�
�t

+∇(U·)
)
W+∇ ·(PtotU)+C(Te)=msZN (〈w ·S f̃ 〉+U ·〈S f̃ 〉)−qsE ·〈v f 〉

where C(Te) is a diffusion operator related to the Spitzer thermal conduction, see [4]. Then, if only
one internal energy would be addressed, the source term in the internal energy equation would
reduce to msZN 〈w ·S f̃ 〉+Q, where

Q=−qsE ·〈w f̃ 〉
As a matter of fact, two energy evolution equations are to be considered for a classical

modeling of the plasma. Let us recall that without any coupling with the ST particles, they read as
(see [5]) (

�
�t

+∇(U·)
)

(N �I)+PI∇ ·U−�=0 (4)

(
�
�t

+∇(U·)
)

(N �e)+Pe∇ ·U+C(Te)+�=0 (5)

where � denotes to energy exchange term between ions and electrons (proportional to the difference
of ion and electron temperatures). Consider now the coupling with the ST particles; the terms
coming from this coupling has to be added to the right-hand side of (5)(

�
�t

+∇(U·)
)

(N �e)+Pe∇ ·U+C(Te)+�=msZN 〈w ·S f̃ 〉+Q (6)

To the best of our knowledge, system (2)–(6) has not been considered up to now (in [6] such a
system is expressed in 1D without the term Q). The term Q is the counterpart of the work of the
electric field; note that it has to be evaluated in the matter reference frame.

The coupling terms: The simplest definition for E is ∇Pe+ZNqeE=0, see [1]. The momentum
deposition within the matter reference frame reads

〈S f̃ 〉=Y

(
〈w f̃ 〉+3

Te
ms

〈
2w
|w|2 f̃

〉)

The ST particle energy ms|w|2 is generally large compared with the electron temperature; hence,
the second term is negligible compared with the first one and 〈S f̃ 〉�Y 〈w f̃ 〉. Since w ·Oe(w)=0,
the energy deposition term within the matter reference frame reads as 〈w ·S f̃ 〉=Y 〈|w|2 f̃ 〉.
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3. NUMERICAL METHOD

The Euler system: One uses a Lagrange-type code based on the classical Wilkins method.
At each time step, this method consists of two stages: firstly one moves each node according

to the force due to the pressure gradient, secondly one solves the internal energy equations, see
[5]. These stages are followed by a mesh regularization.

To perform the coupling between the two models, one must evaluate in each cell the electric
field E on one hand and the momentum and energy deposition by the ST particles on the other
hand.

The transport equation: A Monte Carlo method is used. The method is based on the approxima-
tion of the solution f (t, x,v) by a sum of Dirac measures, see [7]. For instance, at the beginning
of the simulation, one sets

f (0, x,v)dx dv�
npart∑
p=1

�p(0)�vp (dv)�xp (dx)

where npart is the total number of particles. For each particle, �p(t) denotes its weight at time t;
xp(t), vp(t) its position and its velocity. At each time t , in each cell M , one has the following
estimates:∫

M

∫
f (t, x,v)dvdx� ∑

p,s.t. xp∈M
�p,

∫
M

∫
f (t, x,v)vdvdx� ∑

p,s.t. xp∈M
�pvp

It is useful for a good implementation to have a probabilistic interpretation of the dual operator of

f ↪→− qs
ms

E · � f

�v
+ZN

�
�v

·(SE f )

that is to say (with YD = 3
2ZNYTe/ms)

� ↪→ qs
ms

E · ��

�v
−ZNYw

��

�v
+YD

�
�v

(
1

|w|
(
1− ww

|w|2
)

��

�v

)

Note that

1. E(�/�v)� corresponds to an acceleration in the direction of E;
2. −w(�/�v)� corresponds to a straight line slowing down (in the matter reference frame);
3. the deflection operator (�/�w)(1/|w|)((1−ww/|w|2)��/�w) corresponds to a diffusion on

a sphere, indeed one can check that the solution of the elementary equation (of Laplace–
Beltrami type)

��

�t
− �

�w

(
1

|w|
(
1− ww

|w|2
)

��

�w

)
=0, �(0,w)=�w0

satisfies
∫

�(t,w)|w|2 dw=|w0|2 for any t . As a matter of fact, the solution of this equation
is an analytic function depending only on the angular variable w ·w0 and its support is the
sphere of radius |w0|.
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Hence, the Monte Carlo method consists in a tracking of the particles in the mesh used by
the hydrodynamics solver. In each cell M , where the mean velocity is UM , the particles move
with their relative velocities wp =vp−UM , and their velocities are changed according to the three
modifications listed above.

Moreover, when the particle p goes from cell M to cell M ′, its velocity wp has to be corrected
by the following way:

w′
p+UM ′ =wp+UM

In each cell M , one has to estimate the quantities 〈 f̃ 〉|M , 〈w f̃ 〉|M , 〈|w|2 f̃ 〉|M , in the matter
reference frame. For instance, we obtain 〈w f̃ 〉|M �∑

p,s.t. xp∈M wpLM
p �p, where LM

p denotes the
distance covered by the particle p in the cell M.

It is well known that the accuracy of the Monte Carlo method is proportional to 1/
√
npart;

hence, variance reduction techniques are to be used. The basic technique is the so-called Russian
Roulette, which consists in killing the particles when their weights are small enough (with
respect to their initial values). Of course, it is necessary to create particles with an agreement
to the physical source localization. Other techniques like zone spitting may be used, see [7], for
instance.

4. NUMERICAL RESULTS

Numerical example 1
One addresses a dense and hot spherical plasma with a source of ST particles in the center of the
sphere. The initial density and temperature profiles are very stiff (conditions of inertial confinement
fusion plasma), see Figure 1. At a given time, one compares the profile of the momentum deposition
with the profile of ∇Ptot, (Figure 2). One notes that the momentum deposition msN 〈S f̃ 〉 is
important in the zone where the pressure gradient is large, which is the crucial zone for energy
deposition.

0 0.001 0.002 0.003 0.004 0.005

R (cm)

0

2×108

1×108

T
e 

(K
)

0 0.001 0.002 0.003 0.004 0.005

R (cm)

0

500

1000

1500

ρ(
g/

cm
3 ) 

Figure 1. Temperature and density profiles versus radius.
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Figure 2. Profiles of ∇Ptot and of msN 〈S f̃ 〉 versus radius.
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Figure 3. Profiles of I and I +Q versus radius.

Numerical example 2
The same spherical plasma is considered with the same Te profile, but with N much lower. The
comparison of Q with I =msN 〈w ·S f̃ 〉 at a given time step is plotted in Figure 3. One sees that
in that case the influence of the term Q may be not negligible.

5. CONCLUSION

In the two-temperature Euler equations modeling a hot plasma, we have performed the coupling
with a simplified transport equation which is relevant for the slowing down of the ST particles.
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This coupling has been made in a consistent manner in such a way that there is good momentum
and energy balance. It is implemented in a 2D plasma code and some preliminary numerical results
are given.

REFERENCES

1. Chen FF. Introduction to Plasma Physics. Plenum Press: New York, 1977.
2. Landau L. The Transport Equation in the Case of Coulomb Interactions. Pergamon Press: Oxford, 1965 (in

collected paper of L. Landau).
3. Shkarofsky IP, Johnston TW, Bachynski MP. The Particle Kinetics of Plasma. Addison-Wesley: Reading, MA,

1966.
4. Spitzer L. Physics of Fully Ionized Gases. Interscience: New York, 1962.
5. Bowers RL, Wilson JR. Numerical Modeling in Applied Physics. Jones-and-Barlett: Boston, MA, 1991.
6. Kuroki Y et al. Fusion product momentum deposition. Nuclear Fusion 2000; 40:357.
7. Lapeyre B, Pardoux E, Sentis R. Introduction aux Méthodes de Monte-Carlo Pour les Equations de Transport.
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